Heisenberg's uncertainty principle

Lemma

If
f1p = iapp (6.29)



Heisenberg's uncertainty principle

Lemma

If
f1p = iapp (6.29)

for some real parameter a, then (Ayx)(Ayp) = 3h.



Heisenberg's uncertainty principle

Lemma

If
f1p = iapp (6.29)

for some real parameter a, then (Ayx)(Ayp) = 3h.

Proof If X¢) = iap1y then we have



Heisenberg's uncertainty principle

Lemma

If
R = iapy) (6.29)

for some real parameter a, then (Ayx)(Ayp) = 3h.

Proof If X¢) = iap1y then we have
(V. {%.610) = (. %pY) + (¥, PRY)



Heisenberg's uncertainty principle

Lemma

If
R = iapy) (6.29)

for some real parameter a, then (Ayx)(Ayp) = 3h.

Proof If X¢) = iap1y then we have

(0 A%, B1¢) = (¢.XpY) + (¢, pRY)
= (X, py) + (PY, %)



Heisenberg's uncertainty principle

Lemma

If
f1p = iapp (6.29)

for some real parameter a, then (Ayx)(Ayp) = 3h.

Proof If X¢) = iap1y then we have

(Y, A%, B}p) = (W, xpy) + (v, pxap)
= (Xw,mﬁ) (P%Xlﬁ)
= (lapw,pw)Jr(pw,Iapw)



Heisenberg's uncertainty principle

Lemma

If
&@u = japy (6.29)

for some real parameter a, then (Ayx)(Ayp) = 3h.

Proof If X¢) = iap1y then we have

(0 A%, B1¢) = (¢.XpY) + (¢, pRY)
= (X, pY) + (P, X¢)
= (iapy, py) + (P, iapyp)
= (—fa+ia)(py,pv) =0,



Heisenberg's uncertainty principle

Lemma

If
R = iapy) (6.29)

for some real parameter a, then (Ayx)(Ayp) = 3h.

Proof If X¢) = iap1y then we have

(0, {%,63¢9) = (¥, %py) + (¢, pRY)
= (X, pv) + (PY, X¢)
= (iap, py) + (P, iapy))
= (—ia+ia)(pv,pv) =0,
This is the condition for the first term on the RHS of (6.26) to
vanish,



Heisenberg's uncertainty principle

Lemma

If
f1p = iapp (6.29)

for some real parameter a, then (Ayx)(Ayp) = 3h.

Proof If X¢) = iap1y then we have

(0, {%,63¢9) = (¥, %py) + (¢, pRY)
= (%, pY) + (PY, X0))
= (iap, py) + (P, iapy))
= (—ia+ia)(pv,pv) =0,
This is the condition for the first term on the RHS of (6.26) to
vanish. We also have that (X), = ia(p)y



Heisenberg's uncertainty principle

Lemma

If
f1p = iapp (6.29)

for some real parameter a, then (Ayx)(Ayp) = 3h.

Proof If X¢) = iap1y then we have

(0, {%,63¢9) = (¥, %py) + (¢, pRY)
= (X, pY) + (P, X¢)
= (iap, py) + (P, iapy))
= (—ia+ia)(pv,pv) =0,
This is the condition for the first term on the RHS of (6.26) to

vanish. We also have that (X),, = ia(p)yand, since both
expectations are real, this implies that (X),, = (p),, = 0.



Heisenberg's uncertainty principle

Lemma

If
Xy = iapyp
for some real parameter a, then (Ayx)(Ayp)

Proof If X¢) = iap1y then we have

= 3h.

(0, {%,63¢9) = (¥, %py) + (¢, pRY)
= (X, pY) + (P, X¢)
= (iap, py) + (P, iapy))
= (—ia+ia)(pv,pv) =0,
This is the condition for the first term on the RHS of (6.26) to

vanish. We also have that (%), = ia(p)yand, since both &

(6.29)




Heisenberg's uncertainty principle

Lemma

If
Xy = iapy

for some real parameter a, then (Ayx)(Ayp) = 3h.

Proof If %1 = iapa) then we have (% ﬁ@

(645, 610) = (9.250) + (0,p%0) (8% 7'%)

ropen) = Gapre ign) = (RUBU)+(BURY) (a4 (62, 5%)
&y s = (pe, Fa) = (@P0p0) + (P iape) ”w
P odert — L k,ﬂ, & ' = (—fa+ia)(py, pv) =0,
“This's [{he Cb(rTC}ItIOI’l ’for the first term on the RHS of (6.26) tof\ = (2‘%

;) vanish. We also have that (X),, = ia(p)yand, since both L= - C(D

h{m expectations are real, this implies that (%), = (p)y = 0. Hence/ )
A (2~ (R = ialp — o). AW = AT

and we have equality in (6.24) and hence (6.28). B



Heisenberg's uncertainty principle
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Lemma

The condition (6.29) holds if and only if 1)(x) = C exp(—bx?) for
some positive constants b, C.

Correction: the condition (6.29) holds for any function of this form,
regardless of whether b and C are positive.

However, it only defines a normalisable wavefunction for positive b and
nonzero C.
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Proof.
If Xep = iap1y for some real a, we have that xy) = ah%@b and so
W(x) = C exp(—bx?) for some real b= —2, and because we have
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Conversely, any wavefunction of the form v(x) = C exp(—bx?)
satisfies Xy = iapy for some real a. |



Heisenberg's uncertainty principle
Rip = iapr) (6.29)

The condition (6.29) holds if and only if 1)(x) = C exp(—bx?) for
some positive constants b, C.

equality in (6.28) we know the uncertainty is minimised.
Conversely, any wavefunction of'the form v (x) = C exp(—bx?)
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Gaussian wavepackets are the minimum uncertainty states
with <x>=<p>=0. With a bit more algebra one can generalise this

| : et of
to nonzero expectation values. Mefe: ask swn Cocian g gt 7 evels
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uncertainties of x and p which are quantities defined for a given
state ¢). For example, for any state ¢ with Ayx = 9, we have
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Heisenberg originally suggested that the uncertainty principle can
be understood simply by observing that a measurement of A
creates uncertainty by disturbing the value of any observable B
that does not commute with A. This is not a valid argument!

Problems with the naive interpretation of the uncertainty principle:

@ There is generally no definite fixed pre-measurement value of
either A or B.

@ The mathematical derivation of the uncertainty principle does
not require us to consider measurements of A or B actually
taking place. The quantity Ay A is mathematically defined
whether or not we choose to carry out a measurement of A.



Ehrenfest's theorem

The expectation value (A),, of an operator A in the state 1)
evolves by



Ehrenfest's theorem

The expectation value (A),, of an operator A in the state 1)

evolves by

d
= A



Ehrenfest's theorem

The expectation value (A),, of an operator A in the state 1)

evolves by
d I o~ 0A
7 Ay = 2{H, Ay + (0 )y - (6.30)



Ehrenfest's theorem

We have / definibion of expectabs,, veloe <A>’v

d{Ay ¥ d [> |
da dt/_oo¢Ade



Ehrenfest's theorem

We have

d<A>¢ / O Ard

F(O(Ibt"fdb_ /\ /OO (%b*

A +- ¢—¢ w*A )dX



Ehrenfest's theorem

Proof.
We have
b
d<A>¢ _a . ’11/46‘5 'bf Y\ d s
— (%D* A¢ —|— *A )dX
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For H = % + V/(x), we have

[A,p] = [V(x),h] _
= [V(x), —ih%]
dv

= Jh—
: dx
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(6.32)
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A~ 2
For H= £+ V(x), we have
= Vvt — UV
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These are quantum versions of the classical laws %x = L p (which
follows from p = mv),%p = —9% (which follows from F = ma),

and ditE = 0 (conservation of total energy).

So the average behaviour predicted by quantum mechanics is consistent with
classical mechanics for macroscopic systems. If that were not true, we should be
able to detect discrepancies with classical mechanics, even for large objects,
without doing complicated interference experiments.

For example, if the average energy for some quantum system was not conserved,

that system and letting it evolve. (o

we should be able to build an energy sourCfLor sink by making lots of copies of
Cr
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F<H>w = 0 (6.35)
These are quantum versions of the classical laws %x = %p (which
follows from p = mv),%p = —9% (which follows from F = ma),

and g—fE = 0 (conservation of total energy).

Note that Ehrenfest's theorem shows that expectation values follow equations
analogous to classical laws, but does not describe the behaviour of
uncertainties, which have no real classical analogue.

For example, the uncertainty in position typically increases with time:
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We get the same equations as those for x,p for the classical harmonic oscillator.

(Particular fact about the harmonic oscillator: not true for general potentials.)



https://www.youtube.com/watch?v=1fMilnriS8Q

For another interesting example where Ehrenfest's theorem leads to simple equations of
motion for the expectation values, consider a linear potential V(x) = Ax


https://www.youtube.com/watch?v=1fMi1nriS8Q
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~D 1

H = 2p_m + 2mwa2
= %(ﬁ + imwR)(p — imwX) + %w[ﬁ,f(
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AwJo:g,.LM(W iy valye. ZW




*The harmonic oscillator revisited

We have the following commutation relations:

1

[a,al] = o (= imw)2[%, p] = hw, (6.38)
[H,a] = [a'a,a] =[a',ala = —hwa, (6.39)
[H,a] = [a'a,al] =al[a,a’] = hwa'. (6.40)

Suppose now that 1) is a harmonic oscillator eigenfunction of

energy E:
Hy = Ev.
We then have
i 10\02’( 2 Hayp = [H,al + aHy = (E — hw)ay (6.41)
E Halyp = [H,aly+a Ay = (E+hw)a'y,  (6.42)

4
ar || a
l@, 50 that ay» and a'v are eigenfunctions of energy (E — hw) and

(E + hw).
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*The harmonic oscillator revisited

We can use this to prove by induction that a” and (a)"s are
eigenfunctions of energy (E — nhw) and (E + nhw). For example,

Ha"p = Ha(a" ') = (Ep—1 — hw)a"p, (6.43)

where E, is the energy eigenvalue of a"i. Since Ey = E, it follows
by induction that E, = (E — nhw).

In particular, if it were true that a"+ # 0 for all n, there would be
eigenfunctions of arbitrarily low energy, and so there would be no
ground state.

However, given any physical wavefunction 2, we have that
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*The harmonic oscillator revisited

We can use this to prove by induction that a” and (a)"s are
eigenfunctions of energy (E — nhw) and (E + nhw). For example,
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by induction that E, = (E — nhw).
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*The harmonic oscillator revisited

We can use this to prove by induction that a” and (a)"s are
eigenfunctions of energy (E — nhw) and (E + nhw). For example,

Ha"p = Ha(a" ') = (Ep—1 — hw)a"p, (6.43)

where E, is the energy eigenvalue of a"i. Since Ey = E, it follows
by induction that E, = (E — nhw).

In particular, if it were true that a"+ # 0 for all n, there would be
eigenfunctions of arbitrarily low energy, and so there would be no

ground state.

However, given any physical wavefunction ), we have that

. © _Rd2p 1
(H)y = /_ooiﬂ oy +§mw2x2¢)dx
0,

>

since both terms are non-negative.
So there cannot be negative energy eigenfunctions.
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1
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*The harmonic oscillator revisited

Thus there must be a lowest energy eigenfunction g with

1
0=ayg=——=(p— ImwX)g, 6.44
which implies
L, d ,

—/h% = imwx1g (6.45)

and hence )

mwx
Yo(x) = Cexp(— ), (6.46)

which is indeed the ground state wavefunction we previously
obtained.

Since H = ala+ % and ayg = 0,we have Hyg = %“’wo, giving us
the previously obtained value of h—;’ for the ground state energy.
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*The harmonic oscillator revisited

We have also obtained a closed form expression (6.46) for the
ground state and hence for the excited states,

(a") o = C(%w FimaR)) ep(— ), (6.47)

CERE
T,

and we see immediately that their energies are (n + %)hw

Note: we can also see that there cannot be eigenfunctions with energies other than these i

values. If there were, we could apply (a)*n to them for arbitrarily large n, without j /l; o
obtaining the zero function, and so there would be negative energy eigenstates. 1
With a little more thought we can also show that the eigenspaces must be nondegenerate. ¢ e Z”t\L,\)
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