Quantum mechanics in three dimensions

We can develop quantum mechanics in three dimensions following
the analogy with classical mechanics that we used to obtain the 1D

Schrodinger equation.

MM(@. e

nn Ltysyg - lewe
Unces J"\7(\67 re (ﬁ(r‘,M

v, Aﬂ[‘f[%r\‘.nﬂf/ A sl

}(\ YW t — solagioss

D"/ Prebira_ MMA*{‘,M .




Quantum mechanics in three dimensions

We can develop quantum mechanics in three dimensions following
the analogy with classical mechanics that we used to obtain the 1D
Schrodinger equation. The classical state of a single particle is
described by six dynamical variables: its position

X = (x1,Xx2,x3) = Z?:l xje; and momentum

P= (p17p27p3) — Z?:l Pi€i,



Quantum mechanics in three dimensions

We can develop quantum mechanics in three dimensions following
the analogy with classical mechanics that we used to obtain the 1D
Schrodinger equation. The classical state of a single particle is
described by six dynamical variables: its position

X = (x1,Xx2,x3) = Z?:l xje; and momentum

p=(p1,p2,p3) = 2?21 piei, where e; are the standard
orthonormal basis vectors.

&




Quantum mechanics in three dimensions

We can develop quantum mechanics in three dimensions following
the analogy with classical mechanics that we used to obtain the 1D
Schrodinger equation. The classical state of a single particle is
described by six dynamical variables: its position

X = (x1,Xx2,x3) = Z?:l xje; and momentum

p=(p1,p2,p3) = 2?21 piei, where e; are the standard
orthonormal basis vectors. The particle’s energy is

H===1 V(). (7.1)




Quantum mechanics in three dimensions

Proceeding by analogy with the 1D case, we can introduce

operators o /G; =
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Quantum mechanics in three dimensions

Proceeding by analogy with the 1D case, we can introduce

operators
Xi
pi
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Here we define a vector operator A to be a triple of operators
(A1, Az, A3) such that Ay(x) = (Ar19(x). A2w(§)7 A3¢(f§)) is a
vector for all wavefunctions 9(x) and all x.

We also take the wavefunction ¥ to depend on 3 space and 1 time
coordinates: ¥ = ¥(x, t).



Quantum mechanics in three dimensions

Here we define a vector operator A to be a triple of operators
(Al,AQ,A3) such that Aw(X) = (Aﬂb(X),AQ{ﬂ(X),Aﬂﬁ(X)) Is a
vector for all wavefunctions (x) and all x.

We also take the wavefunction ¥ to depend on 3 space and 1 time
coordinates: 1) = 9(x, t). The 3D normalisation condition is

/W(}_(, £)d3x = 1. (7.5)
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or more explicitly, for a time-independent potential V/,
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Following the 1D analogy gives us the 3D time-dependent
Schrodinger equation

A, ) = i S 0(x, 1), (7.6)

or more explicitly, for a time-independent potential V/,

2

- V) V) = (). (77)

Using the method of separation of variables, as before, we can
derive the 3D time-independent Schrodinger equation
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Following the 1D analogy gives us the 3D time-dependent
Schrodinger equation

~ 0
H¢(>_<, t) — Ih&w()_(a t) ) (76)
or more explicitly, for a time-independent potential V/,

7;L2

2MV2¢(>_<, t) + V(X)w(x t) = ihgzb(x t). (7.7)

Ly~ = W) TLE)

Using the method of separatlon of varla Ies as before we can
derive the 3D time-independent Schrodinger equation

h2

S VR() + V(x)0(x) = Eb(x). (78)
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We can define the probability density and current

plx,t) = [P, )% (7.9)
J(x,t) = (V7 (x, t)V(x, t) = (Vo™ (x, t))v(x, £)]7.10)
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Quantum mechanics in three dimensions

We can define the probability density and current

o) = (B, (7.9)
Jot) = S0 V(e 1) — (V9 (x, 1), )]210)

As in the 1D case (cf (3.16)) we can show that they obey a
conservation equation

dp
ot +V.J=0. (7.11)
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Notice that the 3D Schrodinger equation, like the 1D SE, is linear
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Quantum mechanics in three dimensions

Notice that the 3D Schrodinger equation, like the 1D SE, is linear
and the superposition principle thus applies to its solutions: there
is a physical solution corresponding to any linear combination of
two (or more) physical solutions.

The Born rule naturally extends to the 3D case: the probability of
finding a particle in a small 3D volume V' which contains a point
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Quantum mechanics in three dimensions

Notice that the 3D Schrodinger equation, like the 1D SE, is linear
and the superposition principle thus applies to its solutions: there
is a physical solution corresponding to any linear combination of
two (or more) physical solutions.

The Born rule naturally extends to the 3D case: the probability of
finding a particle in a small 3D volume V' which contains a point

&is

GBY | 10t 0 dx = Vvt 0f (7.12)

X = Vop(x,t).
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3D wavefunctions:



Quantum mechanics in three dimensions

We define the inner product of 3D wavefunctions by

(1.02) = [ 6i(a(0)Px.

The definition of the expectation value of an observable A in terms
of the corresponding hermitian operator A also naturally extends to
3D wavefunctions:
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Quantum mechanics in three dimensions

We define the inner product of 3D wavefunctions by

(1,2) = / (o) dx

The definition of the expectation value of an observable A in terms
of the corresponding hermitian operator A also naturally extends to
3D wavefunctions:

o = [0 (x 0)AG(x, 00Px = (0. A). (7.13)

As in the 1D case, we can justify this definition directly
for position and for operators with discrete eigenvalues.
It can also be justified for general operators: we will
take the definition (7.13) as valid for all operators.
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Quantum mechanics in three dimensions

We define the inner product of 3D wavefunctions by

(1.02) = [ 6i(9a()Px.

The definition of the expectation value of an observable A in terms
of the corresponding hermitian operator A also naturally extends to
3D wavefunctions:

o = [0 (x 0)AG(x, 00Px = (0. A). (7.13)

We can thus define the uncertainty A,A as in (6.21), using the
definition (7.13) for expectation values.

(ApA)P = (A= (A))y
= (A% — ((A)y)?. (6.21)




Spherically symmetric potentials

The 3D time-independent Schrodinger equation simplifies
considerably when the potential V(x) is central, i.e. spherically
symmetric about the origin.
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The 3D time-independent Schrodinger equation simplifies
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Spherically symmetric potentials

The 3D time-independent Schrodinger equation simplifies
considerably when the potential V(x) is central, i.e. spherically
symmetric about the origin.

It is convenient to use spherical polar coordinates

x1 = rsinflcos ¢, Xo = rsinfsin o, x3=rcosf, (7.14)
which have ranges 0 <r <00, 0 <o <27, 0< 60 <.
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In spherical polars, a central potential V(x) = V(r,0, ¢) depends
only on r = |x]|.




Spherically symmetric potentials

The 3D time-independent Schrodinger equation simplifies
considerably when the potential V(x) is central, i.e. spherically
symmetric about the origin.

It is convenient to use spherical polar coordinates

x1 = rsinflcos o, Xp = rsinfsin o, x3 =rcosf, (7.14)

which have ranges 0 <r <00, 0 <o <27, 0< 60 <.
In spherical polars, a central potential V(x) = V(r,0, ¢) depends
only on r = |x|. In spherical polars we have

1 0 1 9?
2 _
T2 (‘9r(r r2 S|n989(sm989) r2 sin’ 6 O¢?

(7.15)
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For spherically symmetric stationary states (r), the

time-independent SE simplifies.We have % = a;f 0 and so
2 _
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Spherically symmetric potentials

For spherically symmetric stationary states (r), the

time-independent SE simplifies.We have % = a;f 0 and so

2 _
v w - r2 dr(r )w
P 2dv
dr? r dr

= =2 (r). (7.16)

Hence

oSS () + V() = Eu(r), (717)



Spherically symmetric potentials

For spherically symmetric stationary states (r), the

time-independent SE simplifies.We have % = a;f 0 and so

2 _
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1 d?
— ;W(rw) (7.16)
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Spherically symmetric potentials

Notice that (7.18) is the 1D time-independent SE for
o(r) = ri(r), on the interval 0 < r < 0.

he d?
— S () + V() () = E(r(r)) (7.18)




Spherically symmetric potentials

Notice that (7.18) is the 1D time-independent SE for
o(r) = ri(r), on the interval 0 < r < 0.
We require ¢(r) — 0 as r — 0, otherwise (r) =~ O(1/r) as r — 0

and so is singular at r = 0.

Remember we are solving for a 3D
wavefunction. If V is not singular
at the origin then psi should be

g{\f) /J\/\’\Aﬁnite and continuous there.

——V?Y(x) + V(x)9(x) = E9p(x). (7.8)

y N




Spherically symmetric potentials

Notice that (7.18) is the 1D time-independent SE for
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and so is singular at r = 0.

Any solution to (7.18) with ¢(r) — 0 as r — 0 can be extended to
an odd parity solution ¢(r) of the 1D SE in —oo < r < 0o of the

same energy,
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Notice that (7.18) is the 1D time-independent SE for

o(r) = ri(r), on the interval 0 < r < 0.

We require ¢(r) — 0 as r — 0, otherwise (r) =~ O(1/r) as r — 0
and so is singular at r = 0.

Any solution to (7.18) with ¢(r) — 0 as r — 0 can be extended to
an odd parity solution ¢(r) of the 1D SE in —oo < r < 0o of the

same energy, with ¢(r) and % continuously defined at r = 0, by

defining ruk hepmahy
/% &(r)Z{W) 2o )(‘L:;w“v(; 19)
—¢(—r) r<Q0. ( '
— - W) Tl et ey
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Conversely, any odd parity solution of the 1D SE for —oco < r < o0
defines a solution to (7.18) with ¢(r) — 0 as r — 0 and % finite
at r =0.



Spherically symmetric potentials

Conversely, any odd parity solution of the 1D SE for —oco < r < o0
defines a solution to (7.18) with ¢(r) — 0 as r — 0 and % finite
at r = 0. Provided that V/(r) is finite and continuous at r = 0,
these continuity conditions imply that ¢ and v’ are continuous at
the origin.

e d°

= o7 a2 (o) + V(n)(re(r)) = E(r(r)) (7.18)
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Spherically symmetric potentials

Conversely, any odd parity solution of the 1D SE for —oco < r < o0
defines a solution to (7.18) with ¢(r) — 0 as r — 0 and % finite
at r = 0. Provided that V/(r) is finite and continuous at r = 0,
these continuity conditions imply that ¢ and v’ are continuous at
the origin.

Solving (7.18) thus becomes equivalent to finding odd parity
solutions to the 1D SE for —oo < r < 0.




Spherically symmetric potentials

< ZZe will show later S?ee Thm. 15) that the ground state (the
state, if there is one) of a 3D quantum

system with spherically symmetric potential is itself spherically
symmetric.
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Spherically symmetric potentials

We will show later (see Thm. 15) that the ground state (the
lowest energy bound state, if there is one) of a 3D quantum
system with spherically symmetric potential is itself spherically
symmetric. Hence we can always use the method above to obtain
the ground state.
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We will show later (see Thm. 15) that the ground state (the
lowest energy bound state, if there is one) of a 3D quantum
system with spherically symmetric potential is itself spherically
symmetric. Hence we can always use the method above to obtain
the ground state.

One might wonder whether there might not exist even parity
solutions ¢, (r) of the 1D SE with the property that

6+(0) = “5-(0) =0,
e d°
L )+ V) = Er(). (718)
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Spherically symmetric potentials

We will show later (see Thm. 15) that the ground state (the
lowest energy bound state, if there is one) of a 3D quantum
system with spherically symmetric potential is itself spherically
symmetric. Hence we can always use the method above to obtain
the ground state.

One might wonder whether there might not exist even parity
solutions ¢, (r) of the 1D SE with the property that

»+(0) = djj (0) = 0,which would also define solutions to (7.18)
for 0 < r < oo with the appropriate properties. The following
lemma rules this out.
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Lemma

There are no even parity solutions ¢, (r) of the 1D SE with the
property that ¢, (0) = id¢r—+(0) = 0.
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Lemma

There are no even parity solutions ¢, (r) of the 1D SE with the
property that ¢, (0) = i(fr—*(O) = 0.

Proof.

If such a solution @ were to exist, we could define a continuous
odd parity solution ¢_(r) by

¢-(r) = { %2(_,) o (7.20)



Spherically symmetric potentials

Lemma

There are no even parity solutions ¢, (r) of the 1D SE with the
property that ¢, (0) = i(?r—*(O) = 0.

Proof.

If such a solution @ were to exist, we could define a continuous
odd parity solution ¢_(r) by

¢-(r) = { %2(_,) o (7.20)

Then ¢(r) = ¢+ (r) — ¢—(r) would also be a solution.
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Spherically symmetric potentials

Lemma

There are no even parity solutions ¢, (r) of the 1D SE with the
property that ¢, (0) = i(?r—*(O) = 0.

Proof.

If such a solution @ were to exist, we could define a continuous
odd parity solution ¢_(r) by

¢-(r) = { gbfiﬁ(_r) o (7.20)

Then ¢(r) = ¢+(r) — ¢—_(r) would also be a solution.But we have
o(r) =0 for r > 0, so that all derivatives of ¢ vanish for r > 0.
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Lemma

There are no even parity solutions ¢, (r) of the 1D SE with the
property that ¢, (0) = i(?r—*(O) = 0.

Proof.

If such a solution @ were to exist, we could define a continuous
odd parity solution ¢_(r) by

¢-(r) = { gbfiﬁ(_r) o (7.20)

Then ¢(r) = ¢+(r) — ¢—_(r) would also be a solution.But we have
o(r) =0 for r > 0, so that all derivatives of ¢ vanish for r > 0.
The Schrodinger equation has no non-trivial solutions with this
property: hence ¢(r) = 0 for all r.



Spherically symmetric potentials

Lemma

There are no even parity solutions ¢, (r) of the 1D SE with the
property that ¢, (0) = i(?r—*(O) = 0.

Proof.

If such a solution @ were to exist, we could define a continuous
odd parity solution ¢_(r) by

¢-(r) = { gbfiﬁ(_r) o (7.20)

Then ¢(r) = ¢+(r) — ¢—_(r) would also be a solution.But we have
o(r) =0 for r > 0, so that all derivatives of ¢ vanish for r > 0.
The Schrodinger equation has no non-trivial solutions with this
property: hence ¢(r) = 0 for all r. Hence ¢(r) = ¢_(r) = 0 for
all r, so in particular the hypothesised even parity solution ¢ is
not a physical solution, as it vanishes everywhere. |




Examples of spherically symmetric potentials

The spherical harmonic oscillator has potential V(r) = 3 Mw?r?.
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Examples of spherically symmetric potentials

The spherical harmonic oscillator has potential V(r) = 3 Mw?r?
The general method we have just given for constructing spherically
symmetric stationary states shows that its spherically symmetric
stationary states are related by (7.19) to the odd parity bound
states of the 1D harmonic oscillator, and have the same energies.

B2 2 @/ ff\“ﬂ”’_/\gl/
= o7 g2 (Fe(0) +HV (Nfru(r) = E(ri(r)) - (7.18)
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Examples of spherically symmetric potentials

The spherical harmonic oscillator has potential V(r) = 3 Mw?r?.

The general method we have just given for constructing spherically
symmetric stationary states shows that its spherically symmetric
stationary states are related by (7.19) to the odd parity bound
states of the 1D harmonic oscillator, and have the same energies.
Thus the lowest energy spherically symmetric stationary state — i.e.

the ground state — has energy %hw



Examples of spherically symmetric potentials

The spherical harmonic oscillator has potential V(r) = 3 Mw?r?.

The general method we have just given for constructing spherically
symmetric stationary states shows that its spherically symmetric
stationary states are related by (7.19) to the odd parity bound
states of the 1D harmonic oscillator, and have the same energies.
Thus the lowest energy spherically symmetric stationary state — i.e.
the ground state — has energy 37w, and the excited states have

2
energies (2n + 2)Aw for positive integer n.

(TR spherically’ symmetric

. ’\
e < 4d 1D harmonic oscillator

bound states




Examples of spherically symmetric potentials

.M u :
The spherical square well has potential

V(r) = { —U r<a, (7.21)

0 r>a.
" V=0



Examples of spherically symmetric potentials

The spherical square well has potential

—U r<a
V(r) = ’ 7.21

(r) { 0 r>a. ( )
By the above argument, spherically symmetric stationary states
correspond to odd parity bound states of the 1D square well
potential

V(x) :{ Y IiI o (7.22)




Examples of spherically symmetric potentials

These, if they exist, can be obtained by the graphical method used
earlier to obtain 1D square well potential bound states.



Examples of spherically symmetric potentials

These, if they exist, can be obtained by the graphical method used
earlier to obtain 1D square well potential bound states. In
particular, one can show (cf. example sheet .10) that there exists
an odd parity bound state if and only if

2MU T
> —
h? — 2a

\ Odd parity solutions arise
when the blue and grey

curves intersect

(7.23)




Examples of spherically symmetric potentials

These, if they exist, can be obtained by the graphical method used
earlier to obtain 1D square well potential bound states. In
particular, one can show (cf. example sheet .10) that there exists
an odd parity bound state if and only if

2MU T
> — 2
h?2 — 2a (7.23)

So, if this condition is not satisfied, the 3D spherical square well
has no spherically symmetric stationary state: i.e. it has no ground
state, and hence no bound states.



Examples of spherically symmetric potentials

These, if they exist, can be obtained by the graphical method used
earlier to obtain 1D square well potential bound states. In
particular, one can show (cf. example sheet .10) that there exists
an odd parity bound state if and only if

2MU T
> — 2
h?2 — 2a (7.23)

So, if this condition is not satisfied, the 3D spherical square well
has no spherically symmetric stationary state: i.e. it has no ground
state, and hence no bound states.

Remember: we stated (and will prove later) that the ground state of
a particle in a spherically symmetric potential is always spherically
symmetric



Examples of spherically symmetric potentials

As this illustrates, 3D potential wells (continuous potentials with
V(x) <0 for all x, V(x) < 0 for some x, and V/(x) = 0 for
|x| > a, for some finite a) do not necessarily have bound states.



Examples of spherically symmetric potentials

As this illustrates, 3D potential wells (continuous potentials with
V(x) <0 for all x, V(x) < 0 for some x, and V/(x) = 0 for

|x| > a, for some finite a) do not necessarily have bound states.
In contrast, we can show that all 1D potential wells have at least
one bound state.
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